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Abstract N

""’>The Failure Detection and Identification (FDI) process is viewed as consisting of
two stages : residual generation and decision making. It is argued that a robust FDI
system can be achieved by designing a robust residual generation process. Analytica
redundancy, the basis for residual generation, is characterized in terms of a parity
space. Using the concept of parity relations, residuals can be generated in a number
of ways and the design of a robust residual generation process can be formulated as a
minimax optimization problem. An example is included t6 illustrate this design e

methodology.

* This work was supported in part by the Office of Naval Research under Contract
No. N00014-77-C-0224 and in part by NASA Ames Research Center under Grant
No. NGL-22-009-124. ‘
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L INTRODUCTION

Physical systems are often subjected to unexpected changes, such as component

failures and variations in operating condition, that tend to degrade averall system

performance. We will refer t0 such changes as *failures*, although they may not

represent the failing of physical components. In order to maintain a high level of

performance, it is important that failures be promptly detected and identified so that

appropriate remedies can be applied. Over the past decade nunmerous approaches to

the problem of Failure Detection and Identification (FDI) in dynamical systems have

been developed [1]; Detection Filters [2,3], the Generalized Likelihood Ratio (GLR)

method [4,5], and the Multiple Mode! method [5,6] are some examples. All of these
analytical methods require that a dynamic model of some sort be given. The goal of

this paper is to investigate the issue of designing FDI systems whichh are robust to

uncertainties in the models on which they are based.

The FDI process essentially consists of two stages : residual generation and

decision making. For a particular set of hypothesized failures, a FDI System has the

structute shown in Figure 1. Outputs from sensors are initially processed io enhance

the effect of a failure (if present) so that it ¢an be recognized. The processed

measurements are called the residuais, and the enhanced failure effect on the residuals

is called the signarure of the failure. Intuitively, the residuals represent the difference

bétween various functions of the observed sensor outputs and the expected values of
these functions in the normal (no-fail) mode. In the absence

should be unbiased, showing

of a failure residuals
agreement betwéen obseived and expected normal

bebhavior of the sy<tem; a failure signature typically takes the form of residual biages
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that are characteristic of the failure. Thus, residual generation is based on knowledge |

of the normal behavior of the system. The actual process of residual generation can
vaty in complexity. For example, in voting systems [7,8] the residuals are simply the
differences of the outputs of the various like sensors, whereas int 2 GLR system, the

residvals are the innovations generated by the Kalman filter.

In. the second stage of an FDI algorithm, the decision process, the residuals are
examined for the presence of failure signatures. Decision functions or statistics are
calculated using the residuals, and a decision rule is then applied to the decision
statistics to determine if any failure has occurréd. A decision process may consist of a
simpie threshold test on the instantaneous values ot moving averages of the residuals,
or it may be based directly on methods of statistical decision theory, e.g. the

Sequential Probability Ratio Test [9].

The first concern in the design of an FDI system is detection.peffomance, i.e. the
ability to detect and identify failures promptly and correctly with minimal delays and
false alarms. In the literature, this issue has typically been dealt with using a given
model of the normal system behavior. An equally important design issue that is
necessarily examined in practice but has received little theoretical attention is
tobustness: minimizing the sensitivity of detection performance to model errors and
uncerfainties. An ideal simplistic approach to designing a robust FDI system is to
include all uncertainties in the overall problem specification; thén a robust desigh is
obtained by optimizing. (in some sense) the performance of the entire system with the
uncertainties present. However, this generally leads to a complex mathematical

problem that is too dificult to solve in practice. On the other hand, a simple approach

-
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is to ignore all model uncertainties in the performance optimization process. The
resultidg design is then evaluated in the presence of modelling errors. If the
degradation in performance is tolerable, the design is accepted. Otlierwise, it is
modified and re-evaluated. Although this method often yields acceptable designs, it
has several drawbacks. For example, it may be unclear what parts of the design
should be modified and what form the modification should take. Furthermore, each

iteration may be very expensive to carty out since extensive Monte Carlo simulations

are often required for performance évaluations.

In this paper we develop a systematic approach that considers uncertainties directly.
Our work is motivated by the prﬁctical design effort of Deckert, et. al. for an aircraft
sensor FDI system [10]. The basic idea used in this work was to identify the
analytical redundancy relations of the system that were known well and those that
contained subdstantial uncertainties. An FDI system (i.e. its residual generation
process) was then designed based primarily on the well-known relationships (and only
secondarily on the less well-known relations) of the system behavior. As model error
directly affect. residual generation, this approach suggests that robustness can be
effectively achieved by designing a robust residual generation process. In our work,
We have extracted and extended the practical idea underlying this application and
developed a general approach to the design of robust FD1 algorithm. In addition to its
use in specifyini residual generation procedure, our approach is also useful as it can
provide & quantitative measure of the attainable level of robustness in the éarly stages

of a design. This can allow the designer to agsess what he can expect in terms of
overall performaiice.

IR SRS,
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In order to develop residual generation procedures, it is important to identify the
redundancy relations of a system and to characterize them dccording to how they are
affected by model errors and uncertainties. In this paper, we further develop the
concept of analytical redundancy that is used in {10,11], and we use this as a basis for

determining redundancy relations to be used for residual generation which are least

sensitive to model errors.

In Section II we describe the concept of analytical redundancy and present a
mathematical characterization of redundancy in linear dynamical systems that extends
ideas developed previously. We also provide for the first time a clear, general
interpretation of a redundancy relation as a reduced-order Auto-Regressive-Moving-
Average (ARMA) model and usée this in Section III to describe the various ways that
analytical redundancy can be used for residual generation and FDI. In Section 1V a
method of determining ~dundancy relations that are least sensitive to model error
and noise effects is described. A numerical example illustrating some of .the
developed conmcepts is presented in Section V. Conclusions and discussions are

included in Section V1.
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1L ANALYTICAL REDUNDANCY - PARITY RELATIONS

The basis for residual generation is analytical redundancy, which essentially takes

two forms : 1) ditect redundancy - the relationship among instantaneous outputs of

sensors, and 2) temporal redundancy - the relationship among the histories of sensor

[
N
!

outputs and actuator inputs. It is based on these relationships that outputs of

(dissimilar) sensors (at different times) can be compared. The residuals resulting

frem these comparisons are then measures of the discrepancy between the behavior of

D il

observed sensor outputs and the behavior that should résult under normal conditions.

Examples where direct redundancy was exploited include [7,8,11,12,13]; explicit use
of temporal redundancy was made in {10]. | |
In order to develop a clear picture of redundancy, consider the following

deterministic model:

x(k+1) = A x(k) + ﬁ‘_ b; u;(k) '
1= R ¢ ¢ ) S

P IR, T AL IR TR e v s U

9y = ¢ x(®) , j=1,., M
(1v)

where x is the N-dimensional state vector, A is a constant N x N matrix, by is a
constant column N-vector, and ¢ is a constant row N-vector. The scalar u; is the

known input to the j-th actuator, and the scalar y, is the output of the j-th sensor.

Direct redundancy exists among sensors whose outputs are algebraically related,
i.e. the sensor cutputs aré related in such a way that the variable one sensor measures "k
can be determined by the instantaneous outputs of the other sensors. For the system {

(1), this corresponids to the situation where a number of the ¢'s are linearly
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dependent. In this case, the value of one of the observations can be written as a
linear combination of the other outputs. For example, we might have
M
yi(k) = 3 a; (k)
i=2 2)
where the a;'s are constants. This indicates that under normal conditions the the ideal

output of sensor 1 can be calculated from those of the ramaining sensors. In the

M
absence of a failure in the sensors, the residual, y,(k)— 3 a;y;(k) should be 2ero. A
=2

deviation form this behavior provides the indication that one of the sensors has failed.
This is the underlying principle used in Strapdown Inertial Reference Unit (SIRU)
FDI1 [7,8]. Note that while direct redundancy is useful for sensor failure detection it is
not useful for detecting actuator failures (as modelled by a change in the b;, for

instance).

Because temporal redundancy relates sensor output and dctuator inputs, it can

potentially be used for both sensor aad actuator FDI. For example, consider the

‘relationship between velocity (v) and acceleration (a) :

v(k+1) = v(k) + Ta(k)
(3)

where T is the sampling interval. Equation (3) prescribes a way of comparing velodity
measurements and accelerometer outputs (by - “:cking to see if the residual,
v(k+1)-v(k)-Ta(k),is zéro) that may be used in a mixed velocity-acceleration sensor
voting system for the detection of both types of sensor failures. Temporal redundancy
facilitates the comparison of sensors among which direct redundancy does not exist.

Heénce it can lead to a reduction of bardware redundancy for sensor FDI. Viewed in a

¥
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different light, the use of analytical redundancy implies that additional sensor failures

can.[n principle be detected with the same level of hardware redundancy.

To see how temporal redundancy can be exploited for detecting actuator failures,

let us consider a simplified first-order model of a vehicle in motion :

v(k+1) = qv(k) + Tu(k)
)

Where v denotes the vehicle’s velocity, a is a scalar constant between zero and one
reflecting the si¥ect of friction and drag. T is the sampling interval, and u is the
commanded engine force (actuator input) divided by the vehicle’s mass. Now the
velocity measurements can de compared to the actuator inputs by means of (4), i.e.
through exsmining the residual v(k+ 1)-av(k)-Tu(k). An actuator failure can be

inferred, if the sensor is functioning normally but the residual is nonzers.

While the additional information supplied by dissimilar sensors and actuators at
different times through temporal redundancy facilitates the detection of a greater
variety of failures and reduces hardware redundancy, exploitation of this additional
information often results in increased computational complexity, since the dynamics of
the system are used in the residual generation process. However, the major issue in
the use of analytical redundancy is the inevitable uncertainty in our knowledge of the
systemd dynamics (e.g. of « in (4)) and the consequences of the this uncertainty on
the robustness of the resulting FDI algorithm. From the above discussion one
approach to the design of robust residual generation in any given application is
evident: first, the various redundancies that are relevant to the fallures under
consideration are to be detérmined; then, residual generation is based on those

relations that are least sensitive to paramieter uncertainties. This {s the approach we
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have adopted. In the remainder of this section we will present a characterization of
analytical redundancy and in a subsequent section we will quantify the effect of

uncertainties on a redundancy relation.

The Generalized Parity Space
Let us define
[Cj
GA
cj(k) - ¢ lf:'o, 1,...
. ji=1,... M (s)
oA

The well-known Cayley-Hamilton theorem [14] implies that there is an n;, 1<€n;<sN,
such that
rank G(6) = {K¥1 X3P

ny kanj ()

The null space of the matrix C;(n—1) is known as the unobservable subspace of the
j-th sensor. The rows of C;(n—1) spans a subspace of RN that is the orthogonal
complement of the unobservable subspace. Such a subspace will be referred to as the

observabdle subspace of the j-th sensor, and it has dimension oy

N
Let @ be a row vector of dimension n= (n;+1) such that wsle!, ..., weM],
=1

where o), j=1,..M, is a (n;+1)-dimensional row vector. Consider a nonzéro

satisfying

A

.-~ .
e R ] LM - s s e

. =

. b~

o
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o) ..., oM x(k) =0, x(k)e« RN

m

Ch (yg)

Note thiat in the above equation C;(n,) has n,+1 rows while it is only of rank n. The
reason for this will become clear when we discuss the temporal redundancy for a
single sensor. Assuming that the system (1) is observable, thére are only n-N linearly
independent w's satisfying (7). We let O be an (n-N)xN .matrix with a set of such

independent w's as its rows. (The matrix Q is not unique.).. Assuming all the inputs

are zero for the moment, we have :
[ Y (k)

Pk) = Q
(8)

YM (k’ nM) !

where
{ y, (k)

Y, (k,0) = ] ietaM

¥y (k+n)

Note that Equation (8) is independent of the state x(k). The (n-N)-vector P(k) is
called the parity vector. In the absence of noise and failures, P(k)=0. In the noisy
no-fail case, P(k) is a zero-mean random vector. Under noise and failures, P(k) will
become blased. Moreover, different failures will produce different (blases in the)

P(k)'s. Thus, the parity vector may be used as the signature-carrying residual for

LY
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FDI. We will further discuss.residual generation based on parity equations In Section l '
11, ' ?
When the actuator inputs are not zero, (8) must be modified to take into account ' |
this effect. In this case ]
[Y,(k,n) | [ By(np)
P(k) - ] . - U(k,ﬂo) }
. . )

| M (k,nm) | [BM (ﬂM) i
t <

where -
BT 0 /

o |
LR By(ry) = 3
o A" 'B  qA%B 48 0 . . 0 |
- - g

0 i
}t . B tbl, o0y bq] i i

: )' : !
i u(k) = oy (K),..., ug k)]’ ¥
| ng = max(ny, ..., ny) .
o Uk, ng) = [0'(K), ., 0 (kb)) <
S b

;'; ! Bj(ny) is an (n;+1) x n4q matrix ( q is the number of actuators). Note that Equation
| g
- - e
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(9) only involves the measurable inputs and outputs of the system, and it does not

depend on the state x(k) which is not directly measured.

The quantity P(k) is known as the generalized parity vector, which is nonzero (or
pon-zero mean if noise is present) only if a failure is present. The (n-N) dimensional
space of all such vectors is called the generalized parity space. Under the no-fail
situation (Pi{k)=0), (9) characterizes all the analytical redundancies for the system
(1), because it specifies all the possible relationships among the actuator inputs and
sensor outputs. Any linear combination of the rows of (9) is called a parity equation ot
a parity relation, any linear combination of the right-hand side of (9) is called a parity
function. Equation (6) implies that we do not need to consider a higher dimensional

parity space that is defined by. (9) with n, replaced by 1>y, j=1,..,M, although it is

possible to do so. We note that the generalized parity space we have just defined here .

is an extension of the parity space considered by Potter and Suman [11] to include
sensor outputs and actuator inputs at different times. In [11], Potter and Suman

studied exclusively (9) with nj=ny= - - - =0.

A useful notion in describing analytical redundancy is the order of a redundancy
relation. Consider a parity relation (under the no-fail condition) defined by
% o 1v,(k,1) - By(n) Ulk,ag)] = 0
I=1 (10)
We can define the order p of such a relation as follows. Sinceé some of the ¢lements
of » may be zero, there is a largest index A such that the A-th element of o' for some
| is nonzero but the (h+1)-st tbrough the (nj+1)-st elements of each « are zero.

Then p is defined to be A—1. The order p désctibes the "memory span” of the
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redundancy relation. For example, when p=0, instantaneous outputs of sensors are
involved. When p>0, a time window of size p+1 of sensor outputs and actuator

inputs are considéred in the parity equation. For example, (3) is a first order parity

relation.

To provide more insights into the nature of parity relations, it is useful to examine

several examples.

1. Direct Redundancy

Suppose there are «'’s of the form
o = [w},0,.,0]

where at least two of the w{'s are nonzero, and they satisfy Equation (7). Then we

have the following direct redundancy relation
[y, (k)

lwd, ..., o . -0
v ()

Note that the above expression represents a zeroth order parity equation.

2. A Single Sensor

Equation (6) implies that it is always possible to find a nonzero o such that

o Y (k,a) - B;(n)U(k,n9)) = 0
(11)
Note that Equation (11) is of order r;, and it is a special case of (10). (This is why

we have used n; instead of n-1 it (7) in arder to include this type of temporal

redundancy.) Since this redundancy relation invoives only one Sensor the parity
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function defined by the left-hand side of (11) may beé used as the residual for a

self-test for sensor j, if B;(0)=0 or if the actuators can be verified (by other -

means) to be functioning properly. Similarly, it can be used to detect actuator
failures if sensor j can be verified to be normal. Equation (4) (in which v(k) is

directly measured) represents an example of this type.

Alternatively (11) can be te-written as

8y n |
y&) = = ()" 2‘«&-« (k=)= 3 o}, u(k-1) l
t= t=1

(12)

where
[0&, e ay d’&l_l, 0,..., 0] - w"B, (n,»)

o, t=0,...,.n,-1, is a q-dimensional row vector, and w], t=0,...,n;~ 1 is the (141)-st
component of «. Equation (12) represents a reduced-order ARMA model for the
j-th sensor alone. That is to say, the output of sensor j can be predicted from its
past outputs and past actuator inputs according to (12). Based on the ARMA
mode! several methods of residual generation are possible. We will discuss this

further in Section III.

3. Temp~ral Redundancy Between Two Sensors
A temporal redundancy exists between sensor i and sensor j if there are

“i - (06, TR ’«:'-‘,0]

@ =lwf,... ,0.’,‘-1.0‘

satisfying the redundancy relation
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. [Yt“‘t"t)] [B, (x n.)
(o, &

U(k ) =0

Equation (13) is a special case of. the general form of parity equation (10) in the
no-fail situation with wS=0 for s=i, s®j. The relation (13) is of order

p <max(m;,n;). Clearly, (13) holds if and only if

(@), ..., wh_1Ci(0-1) = [w), ..., @}_,IC (m-1)
° Sl ° ot (14)

and, (14) implies that. a redundancy relation exists between two sensors if their
observable subspaces overlap. Furthermore, when the overlap subspace is of
dimension i, there are i linearly independent vectors of the form [o' '] that will

satisfy (13). Note that (3) (with both v(k) and a(k) measured) represents an

example of this type.

Because the order of (13) is.p, either w) or w) must be nonzero. Assuming

«g:-so, we can re-write (14) in an ARMA representation for sensor j as in (12)
y (k)= - (w))! t @)y (k=-t) + %‘ wy i (k=t) - & (a)-+ o) Julk-t)
tel =0

That is, the parity relation (13) specifies an ARMA model for the jth sensor, with
the original system input u and the ith sensor output acting as inputs to this
reduced order model. In general, any parity relation specifies an ARMA model for .

sonie sensor driven by u and by possibly all of the othér sensor outputs.
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IIL. RESIDUAL GENERATION FOR FDI

In the first part of this section we discuss alternative residual generation
procedures, and in the latter half of the section we discuss how such residuals, once
generated, can be used for failure detection. Our development in this section section
will.be carried out in terms of a second order system (N=2) in the form .of (1) with
the following parameters.

]
a1 ay, 0
A= . b=
0 a2 ll] (15)

€= [1
Cz‘ '0

0]

1]

In this case my=2, n,=1, ahd n—N=3. Thesefore, there are only thtee linearly
indepeéndent parity equations which may be written as

¥1(k) - (ajy+a39)y, (k-1) +2y129,y) (k-2) —ayqu(k-2) = 0

V1(k) -y 91 (k=1) —2;9y,(k-1) = 0
(16)

72(k) - 25,y (k-1 - u(k-1) = 0

Note thpt these represent temporal redundancies.
Residual Generation Based on Parity Relations

For a zeroth order parity relation (i.e. a direct redundancy relation) the residual is
the corresponding parity function. For a highér order parity relation (tediporal
redundancy), there are three possible methods for the residual generation. We wiil

illustrate these using the second parily equation of (iﬁ).
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1. Parity Function as Residuals

Just a8 with direct redundancy relations, the parity function itself can be taken

as a résidual. For our specific example, this would be

1 (k) = 1 (k)-a"yl (k"'l)“ﬂuY; (k-1)
17)

Such a residual is a moving average process, i.e. it is a function of a sliding window
of the most recent sensor output and (possibly) actuator input values. It is useful ‘
to note the éffect of noise and failures on the residual. Specifically, if the sensor 1
outputs are corrupted by white noise, the parity function values will be correlated
over the length of the window. In our example, r (k) is correlated with r,(k—1)

and ry (k+1) but not with any of its vdlues removed by more than one time step . /

The effect of a failure on a parity function depends, of coutse, on the nature of
the failure. To illustrate what typically occurs, consider the case in which one
sensor develops a bias. Since the parity fﬁncﬁon is a moving average process it }
also develops a bias, taking at most p steps to reach the steady state value. In our

example, if y;(k) develops a bias of size 8 at time 0, r; (k) will have a bias of size

—ay48 from time 0+1 on.
S 2. Open-Loop Residuals

As discussed in the preceding section, any temporal redundancy relation

~ele ol o

gpecifies an ARMA model. In our example we havé the model

y1(k) =ay, V1(k=1) 42,3y, (k-1) ‘ 1
(18) &
This equation leads naturally to a second residual generation procedure: solve

equation (18) recursivély using as initial condition the actual initial value of the
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first sensot output and then using thé actual value of the second sensor in the

récursion; compare the résult at edch instant of time to the actual output of sensor.....

1._That is , we compute

il(k) - gy §y(k—1) +a;5y,(k-1)

19)
with ‘

i] 0) = 1 ©)

and the resulting residual is

ty(k) = y, (k) — §, (k)

The behavior of this residual is decidedly different from that of .ry(k). In
partiedlar, ry(k) is not a moving average of previous values as it involves the /
integration of y,(k). Thus, if yy (k) and y,(k) are corrupted by white noise, r,(k)
will in general be correlated with all of its preceeding and future values. For

example, if a) =1, ry(k) is nothing but a random walk. ‘

The effect of failure is also different in ry(k). For example, if y,(k) develops a
bias, this bias will be integrated in (19). In particular, if a;;=1, r,(k) will develop

a ramp of slope —ay8 at timhe time 9+1 if sensor 2 develops a bias of size 8 at
time 4.

3. Cloged-Loop Residuals

A third méthod of residual generation is also based on the ARMA model (18), !
but explicitly taking noise into account. Specifically, we write each sensor output 3

as its noise free value plug noise:




.’,.

Yi(k) = y,0(k) + v;(k)
(20)
Then, from (18) we obtain the equation

Y“(k) - a,,y,.(k-l) + auyg_(k-l) - duvz(k‘-l)
21)
Note that the known dtiving term here is the actual sensor output, attd thus the

noise on this output becomes a driving noise for.the model (21). Given this

model and the noisy measurément y, (k) of y;, (k) we can design a Kalman filter

9“(k) - 8"9‘0(1("'1) + auyz(k-l) +H fg(k)

where H is the Kalman gain and the residual is the innovations

f;(k) il £ (k) - a";'"(k—l) - GIQYz(k—l)

In this case, r;(k) is an uncorrelated sequence. Also, if y2(k) develops a bias at
time 9, the trend in ry(k) will be time-vatying. Specifically, it will begin at time

0+1 as a ramp, but will level off to a steady state bias due to the closed-loop

nature of the the residual generation process.

All three of these residual genetation procedures have been used in practice. For

deiection [7,8] to the validation of signals in auclear plasts [13]. The open-loop
method was used in detecting sensor failures on the F-8 aircraft [10], as was the
closed-loop method, which has also been used in such applications as
electrocardiogram analysis (6] and manuever detection [15]. Our contribution here is

to expose the fundamental relationships among (heése in general,

example, patity fusictions have found many applications, ranging from gyro failure .. .._.

H
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At first glance, it might seem that the closed-loop method. is the logical method to
uge in that, if the sensor noise is white, it produces an uncorrelated sequence of
vesiduals rather than a correlated.one that would have to be whitened in an “optimal®
detection system. In fact, going one step further, it would seem decidedly suboptimal
to use only one or several redundancy relations tather than all of them. That. is, the
"optimal” approach would séem to be designing a Kalman filter based on the entire
model (1). This, howevet, is true only in the most ideal of worlds in which our
knowledge of the system dynamics is perfect. When model usncertainties are taken
into account it is not at all clear that this is what one should do. Rather, it would
seein reasonable to identify only the most robust redundancy relations and then to

structure failure detection systems based on these. This leads to two obvious
questions:

1. How does one define and determine robust redundancy relations ?

2. Given a set of such relations, how does one use them in concert in designing a

failure detection system ?
In the remainder of this section we discuss the second of these questions, whils the
first is addressed in. the next section. Throughout these developments we will focus
oh using the first (i.e. the parity function) method of residual generation, as this is the
simplest analytically while allowing us to gain considerable insight and develop some

very useful techniques for robust failure detection.
Use of Parity Functions ix a Fallure Detection System

Now we discuss how the residuals generated using parity functions can be used for
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failure. detection. In this discussion we will not be concerned with the detailed
decision procéss, which would involve spe ‘fic statistical tests, but wé will focus on the
eometry of tbe failure detection problem. First we will examine (sensor) EDI using
ditect redutidancy. This is the case that has been examined in most detail in the
literature, for example, in the work of Evans and Wilcox [7], Gilmore and McKern
(8], Potter and Suman (111, Daley, et. al. (12], and Desai and Ray [13]. We include
this brief discussion of concepts developed by others in ordar to provide for a basis for

out discussion of their extention to include temporal redundancy relations.

Consider a set of M sensors with output vector y(k)=[y; (k),....yp (X))’ and a parity
vector

P(k) = Q y(k)
(22)
Where Q is a matrix with M columns and a number of rows (the specification of

which wm be discussed later). From Section II, we see that Q is not unique, and for
any choice of 0 such that (22) is a parity vector, we know that P(k) will be zero in
the absence of a failure (and no noise). However, the nature of failure signatures
contained in the parity vector depends heavily on the choice of 0. Clearly Q@ should

be chosen so that failure signatures are easily recognizable. In the following we will
describe two approaches for achieving this purpose.

One way of using the parity vector for FDI is via what we term a voting scheme. To
implement the voting scheme, we need a set of parity relations such that each
component (l.e. sénsor or actuator) of interest is included in at least one parity
relition and ¢ach component is excluded from at léast one parity relation. When a

component falls, all the parity relations invelving it will be violated!, while those
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excluding it will still hold. This means that the components involved in parity
telations that hold can be immeédiately declared as unfailed, while the component that
is common to all violated parity relations is readily identified as failed. This is the
basic idea of voting that is used in [7,8]. In fact, for the detection and identification
of a single failuré among M components at least M-1 parity relations are required?,
Therefore, the number of rows in 0 should be at least M-1, and the rows of Q
should be. chosen .to satisfy the above criterion on the set of parity relations.
Furthermore, we note that at least three components are needed for voting and that it
may not be possible to determine a required O in many applications, in which case

the use of témporal redundancy is absblutely necessary.

Anothér method which uses more information about how. failures_affect the
tesiduals has been examined by Potter and Suman [11], and Daley, et. al. [1.]. This
method exploits the following phenomenon. A faulty sensor, say the j-th one,

containg an error signal » (k) in its output

(k) = ¢ x(k) + » (k)
| (23)
The effect of this failure on the parity vector defined by (22) is
P(k) - 0, vy (k)

whets 0, is the j-th column of Q. That is, no matter what v (k) is, the affect of a

1. *Violation® edn be defined in & varisty of ways. Typically, one compares the residual value to o
threshold determined by some means (o.g. one may use a statistical criterion to set the thereshold to
schicve 4 specified false alarm- cortect detection tradeoff). Alternatively, one hay use the average
of the residuat over a sliding window to imptove the tradeofl.

2. The logic used tiere has to be modified slightly. 1f each of the M-1 components is excluded from s
differént parity relation dnd the remaining component I8 involved in all patity relitions, then
violation of all patity relations indicutes the failurs of this last component, and failuges in the other
componerils can be identified using the above logic. fn practice, more than M-1 relatiods ate
preferted for better petformance in noiss.
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sensor j failure on the residual always lies in the direction j» Thus, a sensor j failure
cans be identified by recognizing a residual bias in the ); direction. We refer to Q,is
the Failure Direction in Parity Space (FDPS) cotrésponding to sensor j. (In [11] Qs

referred to as the j-th measurement axis in parity space.)

It is now clear that  should de chosen to have distinct columns, so that a sensor. .

faiture can bo inferred from the presence of a fesidual bias in its corresponding FDPS,
(Note thei an Q suitable for the voting scheme has M distinct columns.) In principle,
an Q with as few as two rows but M distinct columas is sufficient for detecting and
identifring a failure among the M sensors. In practice, however, increasing the row

dimension of Q can help to separate the various FDPS's and increase the

distinguishability of the different failures under noisy conditions.

The two FDI methods discussed above can also be used with temporal redundancy.
In a voting schenie, one can see that the same logic applies. (In fact, additional self-
tests may be performed for the sensors providing corroboratory information which is
of great value when noise is present) Consider next the extention of the second.
failure detection method to temporal redundancy relations. In tﬁis case, it is generally
not possidble to find an Q to confine the effect of each component failurs to a fixed

direction in parity space. To see this, consiuer the parity relations (16). We can write
the parity vector as

fy,(k)

) -(ayta) ayay; 0 0 | |y (k-1) lo ‘lnl u(k=1)

Pk) = |1 -ay3 0 0 -a| (v, (k-2)] + 0 0 L(k‘”]
0 0 0 1 -ay|ly, 10

y3(k-1)
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When sensor 2 fails (with output model (23)), the residual vector develops a bias of
the form

P(k) = lg, v(k) + [—2,,’ v(k-1)

1 -y, (24)
Unless v(k) is a constant, the effect (signature) of a sensor 2 failure is. only confined
to a two-dimensional sﬁbspace of the parity space. In fact, generally when temporal
redundancy is used in the parity function method for residual generation, failure
signatures are generally constrained to multi-dimensional subspace in the parity space.
These sudspaces may in general overlap with one another, or some may be contained
in others. If no such subspace is contained in another, identification of the failure is
still possible.by determining which subspace the residual bias lies in. We note that the
detection fiiters of Beard [2] and Jones [3] effactively acts, in a closed-loop fashion, to
conﬂn; the signature of an actuator failure to a single direction and that of a sensor

failure to a iwo-dimensional subspace in the residual space.

As we indicated previouly, the second approach to using parity functions for FDI
Uses some information about the nature of the failure signatures. Specifically, it uses
inforination concerning the sul{spaces in.which the signatures ~volve. In this approach
Bo attempt is made to use any information concerning the temporal structurs of this
evolution. (For example, no assumption was made about the evolution of »(k) in
(24).) 1n some problems (e.8. in [6,10]) one may be able 1o model the evolution of
faildres as a function of time. In this case, the temporal signature of the failure (in
addition to the subspace information discussed above) can be determined. (f, for

Instance, » (k) in (23) is modelled in a particular way, then one immediately obtains a
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‘model of the evolution of P(k) in (24).) Such information can be of further help in

L distinguishing the various failures, especially in the case where temporal redundancy is

= used. Detection systems such as GLR [4,5,6] heavily exploit such information
contained in the residual.
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IV. PARITY RELATIONS FOR ROBUST RESIDUAL GENERATION..

In this section we discuss the issue of robust failure detection in terms of the
notions introduced in the previous section. The need for this development comes
from the obvious fact that in any application a deterministic model such as (1) is quite
idealistic. In particular, the true system will be subjected to noise and parameter
uncertainty. If noise alone were present one could take this into account, as we have
indicated, through the design of a statistical test based on the generated residuals (see,
for example, [4,10]). However, the question of developing a methodology for FDI
that also takes parameter uncertainty into account has not been treated in the

literature previouly. It is this problem we address here.

The starting point of our development is a model that has the same form as (1)
but includes noise disturbance and parameter uncertainty :

x(k+1) = A x(0) + 3 b,(3) 0,0 + £ )
j=1 (25a)

. (k) = ¢;x (k) + 7;(k)

E (25b)
where y is the vector of uncertain parameters taking values in a specified subset I' of
R™. This form allows the modelling of elements in the system matrices as uncertain
quantities that may be functions of a common quantity. The vectors ¢ and
n=[ny, - - - ,um]’' are independent, zero-mean, white Gaussian noise vectors with
constant covariance matrices-Q(20) and R(>0) respectively. In this section we
: consider the problem of determining useful parity relations that can be used for FDI

for the system described by (25).




.-
The Structure and Coefficients of a Parity Function

Before we continue with the discussion, it is useful to define the srructure and the
coefficients of a parity function. Recall that a parity function is essentially a weighted
combination of a (time) window of sensor outputs and actuator inputs. The structure
of a parity function defines which input and output elements are included in this
window, and the coefficients are the (nonzero) weights corresponding to these
elements. A scalar parity function, p(k), can be written as

p(k) = a¥ (k) + U (k)

(26)
where ¥ (k) and U (k) denote the vectors containing the output and input elements in

the parity function, respectively. Together, Y(k) and U(k) specify the parity
structure, and the row vectors « and 8 contain the parity coefficients. Consider, for
example, the first parity function of (16). Its corresponding Y (k), U(k), a, and 8

are
Y(k) = [y, (k-2), y,(k=1), y, (k) I
U(k) = u(k-2) : .
a = [a43y, —(a;;+ay), 1)
B = -a,

Under miodel (25), Y (k) bas the form

Y (k) = Cly) x(k-p) + & (y)E(k) + Bly)U(K) + 7(k) o
27
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Where p is the otder of the parity function, and
§k) = [¢'(k=p),..., &(k-1) )"

The components of 7(k) and Uk), and the rows of C(y), ®(y), and B are
determined from (25) and the structure of Y(k). If, specifically, the i-th component

of Y (k) is y,(k-o), then the i-th component of 7 (k) is
(k) = 9y(k~0)

The vectors { and 4 »°s independent zero-mean Gaussian random sequences with
constant covariances Q and R, respectively The matrix Q is block diagonal with Q on
the diagonal; R =R,3,,, where Ry is the (i,j)-th element of R, 3., is the Kronecker
delta function, Ry is. the (s,t)-th element of R, and the ith element of Y (k) is

¥s(k=c), while the jth element is Yi(k=+). The i-th row of Cly),ie.CG,y)is. .
C(i,y) = c,A?~°
The i-th row, ®(i,y), of ®(y) (which has pN columns) is
(,y) = [eAs=o= cap=e=2 o 0. 0]
Note that x (k-p) is a random vector that is uncorrelated with { and 7, and

E{ x(k-p)§ = x,(k~p)

covix(k=p)} = 2(y)

where Z(y) is the (steady state) covariance of x(k-p) and it is dependent on. y
through A(y) and B(y).

The matrix B and the vector U (k) are determined as follows. First, collect into a
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matrix B all the rows in B,(k,y) (see Equation (9)) corresponding to C(i,y). Then,
collect all the non-zero columns of B into B and the cotresponding components of u

in the window into U (k).

In_the preceeding section, we deéfined parity functions as linear combinations of
inputs and oufputs ihat would be identically zero in the absence of noise. When
parameter uncertainties are included, bowever, it is not possible in general to find any
parity functions in this narrow sense. In particular, with referetice to the function
p(k) defined by (26) and (27) this condition would require that aC(y) =0 for all
yCTI'. Consequently, we must modify our notion of a useful parity relation.
Intuitively, any given parity structure will be useful for failure detection if we can find
a set of parity coefficienits that will make the resulting function p(k) in (26) close .to

zero for all values of yCI' when no failure has occurred. When considering the use

of such a function for the detection of a particular failure one would also want to. ..

guaranty that p(k) deviates significantly from zeéro for all yCTI' when this failure
occurs. Such a parity structure-coefficient combination approximates the true parity
function defined in Section II. Our approach to the robustness issue is founded on

this perspective of the FU* design problem, and we will choose parity structures and

coefficients that display these properties. From this vantage point, it is not neccessary .

to base a parity structure on a C with linearly depenident rows. Of course, the closer
the rows of C are to being dependent the less the value of the state x(k-p) will affect
the value¢ of the approximate parity function, i.e. the the closer the approximate parity

function is to being a true parity function.

Determination of Parity Siructure and Coefficients
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Clearly, there are many candidate parity structures for a given system. For a
voling system, the requirements on Q as described in Section III help to limit the
numbeér of such candidates that must be considered. In addition special features of
the system _under consideration typically provide additional insights into_the choice of
candidate parity structures. Given the set of candidate structures one is faced with the
ptoblent of finding the best coeficients for each and theén with comparing the resulting
candidates. In this paper we will not address the problem of defining the set of
candidate structuras (as this is very much a systém-specific question) but will assume
that we have such a set of structures®, and we will proceed to consider the problem of
determining the coefficients for these structures and their comparison. In the
followihg we will describe a method for choosing robust parity functions. Although
this approach represents only ote method of solving the. problem, it serves well. to

illustrate the basic ideas of a useful design methodology.

The ﬁarity function desigh problem is approached in two steps : 1) coeficients that
will make the candidate parity functions close to zero under the no-fail situation are
determined, 2) the resulting parity functions that provide the most prominant failure
signatures for a specified failure will be chosen. We will consider the coefficient

design prodlem first.

We are concerned with the choice of the coefficients, « and 8 for the parity

function
p(k) = a [C(y) x(k-p) + ®(y) ?(k) +B(y)UKk) + 5k)] - gU(K)

Noté the dependence of p(k) on a, B, v, x(k—=p), and U(k). As p(k) is 4 random

* This set could be all structures up to a specitied order, which is a finite set.

[
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variablé, a convenient medsure of the magnitudé (squared) of p(k) is its variance,

Bl p2(k) }, where the éxpectation is takens with respect to the joint probability density of

x(k-p), {(k), and 7(k) with the mean Xo(k—-p) ad the valne of U(k) assuthed

kiiown. As we will discuss shortly, this can be thought of as specifying a particular
operating condition for the system. Note also that the statistics of x(k—p) depend on
y. Define

e(a,B8) = max E{p2(k)}
ref (28)

~ The quantity é(a,8) represents the worst case effect of noise and model uncertainty

on the parity function p(k) and is called the parity error for p(k) with the coefficients «

and §. We can attemipt to achieve a conservative choice of the parity coeficients by

'solving-

1:1'%1 e(a,B)

Since it has a trivial solution («=0, S=0) this optimization problem has to be
modified in ordér to give a meaningful solution. Reécall that a parity equation

primarily relates the sensor outputs, i.e. a parity equation always include output terms

but not necessarily input terms. Therefore, a must nonzero. Without loss of

generality, we can restrict & to have unit magnituds. The actuator input tersis in a
parity relation may be regarded as serving to make the parity function 2¢éro so that 8 is
nontinally free. In fact, 8 has only a single degree of freedom. Any S can be written
as B=AU'(k)+2', where 2 is a (column) vector orthogonal to U (k). The component 2’

in B will not produce any effect on p(k). This implies for each ¥ (k) we only have to

consider B of the forim B=)AU’(k), and we have the following minimax problem

- e e e ———— - e % 2n
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12‘1? max E{ p2(k)}
b 4
st aa'=1 (29)

where

E{p?(k)} = [a, A} S [a,2 ]’

and S ig the symmetric positive-definite matrix

g Si 312] B
1821 81

S11 = C(y) [x,(k—p)x,' (k—p) + Z(y) ] C'(y) +
(y)Q¥'(y) +B + B(y) U() V' (K) B'(y) +

Cly) xo(k~p) U'(K) B'(y) + B(y) U(k) x,' (k) C'(y).

N e

R e

812 = 83’ = =S} [B(y) U(k) + C(y) x, (k-p) |

[V —
Ry .

S2 = (U () U (k) ]

Let o’ and 1° denote the values of « and A that solve (29), with g°«x‘U’(k). Let
e’ be the minimax patity error of (29), i.e. ¢'=e(a’,8°). Then ¢ is the parity error
corresponding to the parity function p’(k)=a'Y(k)+8'U(K). The quantity o'

measurés the usefulness of p'(k) as a parity function around the operating point
specified by x,(k—-p) and U (k).

Although the objective function of (29) is quadratic in « and A, (29) is generully §
very difficult to solve, because S may depend on y arbitrarily. (See [16] and the next .

section for a discussion of the solution to some special cases.) The dependence oit y
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can be simplified somewhat by the following approximation. Recall that the rol¢ of a
parily equation is to relate the outputs and inputs at different points in time. The
matrices C, @, and B, which specify the dynamics of the system, thus have the
dominant effect on .the. choice of a parity equation. From this vantage point the
ptimary efféct of the uncertainty in y is typically manifested through the direct
influence of these miatrices on the. matrix S, rather than through the indirect effect
they have on Z(y). Said another way, the variation in S as a fusction. of y is

dominated by the terms involving C, @, and B, and in this case one introduces only a

minor approximation by replacing £(y) by 4 constant ¥. This is equivalent to . . .

assuming the likely variations in the state do not change as a function of y. With this
approximation the S matrix shown above can be simplified, and we will use this

approximation throughout the remainder of the paper.

Note that the dépendence of e(a,8) on x,(k—p) and U(k) indicates that the
coeficients in principle should be computed at each time step if Xo(k~p) and U (k) are
changing with time. This is clearly an undesirable requirement. Typically, a set of
coefficients will work weil for a range of values of x,(k—p) and U (k). ‘Eherefore, a
practical approdch is to schedu!s the coefficients according to the operating condition.
Each operating condition may be treated as a.sat-point, which is characterized by some
nominal staté x4 and input U, that are independent of time. Parity coeficients can be
precomputed (by solving (29) with x4 and Ug in place of xg4(k-p) and U(k)) and
stored. Then the appropriate coefficients can be retrizved for use at the corrésponding
set-polnt. When the state and the input are vatying slowly, this scheme of scheduling

coeficierits is likely to deliver performance close to the oplimuni.
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If a more accurdle appfoximation is desired, the coefficients schéduling schete
described above can be modified to account for variations in the imput due, for
example, to regulation of the system at the set peint x,. In particular, one can
consider modelling U (k)=U,+8U (k), where 3U (k) is a (stationary) zero-médn
random process that models the deviation of the input ftom the nominal U, With
this modification, the éxpectation of p’(k) has to be taken with respect to the joict
probability dens;ity of x(k-p), 1(k), #(k), and 83U (k). with x, and U, fixed. This will
lead to 4 more complex S matrix. Furthermore, the vector B will no longer be
constro'ned but completely fres. However, the general form of the optimization

problem remains unchanged.

Another approach to circumvent the requirement of solving the coefficient design

problem fot many values of x, and U, is to modify (29) to be

min max EB{pPk)} :
“h = (30)

staa'=l x,(k-p)€X
UR)éY

where X and Y denote the ranges of values that xo(k) and U(k) may take,
respectively. This formulation leads to a single patity function over all opetating
conditions. We will not explore this approach here, but refer the reader to f17.
Whether this alternative approach or our coefficient-scheduling method is mote
appropriate depends on the problem. if the state and control are likely to vary
significantly and if ¢(a,B) is not that strong a function of x, and U, the alternative
approach would be appropriate. If however th state and control are likely to be near
gpecific set points for periods of time, then using a patity function matched to that

condition would yield superior performance.

e AN Cmm
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With the coeficients and the associated patity érrors determined for the candidate
parity structures we can proceed to choosé the parity functions for residual generation
using the parity function method. As the squared_miagnitude of the coeficients [a,S]
scales.the parity error, the parity errors of different parity funetions can be compared
if they ate normalized. We define the normalized parity error,  , the normalized parity
coefficients, and the normalized parity function, 5’ (k), as follows

A U

e=e¢/0
a=al/6.
B=g/0

Pk =3 Yk -8 U®

where
0 = [a,Blla,B) = 1+48°8"

The parity functions with the smallest normalized parity ervors are preferred as they
are closer to being true parity functions under noise and model uncertainty, i.e. they

are least sensitive to these adverse effects.

An additional consideration required for choosing parity functions for residual
genération is that the chosen parity functions should provide the largest fallﬁre
gignatures in the residuals relative to the inherent parity eirors resulting from noise
and parameter uncertainty. A useful index for comparing parity functions for this
purpose is the signature to parity error ratio, w, which 18 the ratio between the

magsnitudes of the failure signature and the parity error. Using g to denots the effect
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of a failure o the parity fugction, =.can de defined as

wm|gl/&

For the detection and identification of a particular failure, the parity function that

produces the largest # should be used for residual generation. We give an example of

this procedure in the next section. .

Discussions

Since a large signature to parity error ratio is desirable, a logical alternative
approach to the choice of parity stmcturg and coefficients is to consider the signature
to parity errot ratio as the objective function in the minimax design. Although this is
a8 more direct way to achieve the design goal, it requites solving a more difficult
optimization problem than (29). The method described above and the example iu the
next section take advantage of the comparatively simple optimization problem to
illustrate the essential idea of how to determine redundancy relations that are least
vulnerable to noise and model érrors. For different residual generation methods the
measur. of usefulness of parity functions, such as e and = in the above, may be

different, but the basic design concept illustrated here still applies.

The minimax problem (29) can be teplaced by a maximization if a_probability

density for the parameter y can be postulated. That is, the design problem now takes

the form

max E{p2(k)}
a, A
st aa'=]

where the expectation of p2(k) is taken with respect to the joint dessity of x, {, #, and

s
- ) !l.
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y. This formulation will give a much simpler optimization 10 be solved practically
than the minimax approach,

A
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V. A NUMERICAL EXAMPLE

In this section we considér the problem of choosing parity functions and parity
coefficients for a 4-dimensional system operating at a set-point with two actuators and
three sensors. The system matrices are shown in Table 1. Except for two elements in
the A matrix all parameters are known exactly, These two elements are assumed to

be independent parameters denoted by y; and y,.

Suppose we want to design a voting system for detecting a sensor failure. Three

candidate parity structures are

52(k=2)]
y2(k-1) ¥, (k=2) y3(k-1)
P = el y2) |, Pk} =ayfy oyl PyK) @ ay] yy(k)
Y1 (k-1) " (k) y1 (k-1)

where the «;’s are row vectors (of parity coeflicients) of appropriate dimensions. The

corresponding ® and C matrices are shown in Table 2. Note that each C and ¢ .

matrix depends lineatly on éither y; or y; and that the rows of C, are not linearly
-dependent for any value of y,. The parity structures under consideration do not
contain any actuator terms due to the fact that ¢;B, c,B, c,AB, and c;B are all zero.
This will simplify the solution of the minimax problem without severely restricting the
discussion., Assuming a single sensor may fail, only p; plus p; or p, need to be used
for residual generation (because doth py and p, include sensors 1 and 2). Therefore,
in addition to the coefficient design problem, we have to rank the two parity structures

py and p, in order to determine which will give more robust residuals.

=

ey .
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The minimax design problem has been solved for a set of six test conditions
consisting of different set-points and different plant and sensor noise intensities.
These test conditions are described in Table 3. (The two set-points are obtained by
applying u;=1 or u,=10 to the nominal system model) The nominal state
covatisnces X; and X, due to the two different plant noise intensities Q, and Q, are
listed in Table 4. Due to the simple dependence of the parity functions on the y's an
efficient solution procedure is possible [16]. The resulting parity coefficients and the

corresponding (normalized) parity errors are summarized in Table 5.

It is evident that the parity coefficients in this example are strongly dependent on
the test condition (i.e. the values of x,, Q, and R). Although this dependence.is very
complex, some insights may be obtained from the numerical results. Consider, for

instance, p, under conditions b and ¢. For coandition b the parity function is

Pis(k) = .6411y,(k~1) = 7666y, (k) + .0378y, (k—1)

and for condition c it is

Pre(k) = .8947y,(k~1) - .3667 y5(k) - .2551y,(k~1)

ot

The only difference between these conditions lies in the value of x,. Sincs the first
end fourth columns of C, are zero, only the second and third elements of X, (X, and
Xo3) Will play a role in the coefficient optimizaton problem. The parity function p, can

be written in the form

P1 = a X3 + aa (X3t 7 %oy + @33 + {(yg.ay)

where «,, i=1,2,3 denote the elements of «, corresponding to y,(k-1), y;(k), and

y1(k-1), respectively, { denotes the remaining noise terms. 1t is clear that x,5 and




- 40 -

a;y thodulates the effect of y, on p;. Qualitatively, as |x,,| becomes large relative to
%3] (with all noise covariances the same), the optimal a;, will reduce in size (relative
to ay; and ayy) in order to keep the effect of y, small. As |x,,]increases, the signal to
noise ratio of y; (k) also increases. Therefore, we expect Ja,;| to become large to take
advantage of the information provided by y;(k). Under condition b, x,y> x,5, and
under condition c the reversé is true. An inspection of p; under these condition as
listed above shows that this reasoning holds. Therefore, built into the minimax

problem is 4 systematic way of handling the tradeoff between uncertainty effects due

to noise and error in system parameters.

Note that both p; and p, relate the first sensor to the second one, and pyis a

higher order parity function than p;. Furthermore, the rows of C, are not linearly

dependent for any value of y,. However, the parity error associated with py is smaller
than that of p; in all conditions except condition a. This shows that a higher order
parity relation (which is more likely to contain higher order effects of y) is not
necessarily more vulnerable to mode! errors and noise. In addition, a parity function
based on a C matrix with rows that are linearly dependent for all values of y does not

necessarily produce a smaller parity error than a parity function that is based on a ¢

with independent rows.

In Table.6 we have tabulated the signature to parity error ratio associated with the
three parity functions for sensor failures that are modelled by a constant bias of size ¥
in the output for test conditions ¢ and d. Here, =, denotes the signature to parity
értor ratio for a bias failure in sensot i, and it is calculated by substituting »; for y, in

the parity function (26) with the minimax coefficients. Such a table is helpful for

e et s
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determining the relative metits of P and p;. For instance, under condition 4 and

its #; value is comparable to that of p,.
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V1. CONCLUSIONS

In this paper we bave characterized the notions of analytical redundancy in terms of

a generalized parity space. We have described three methods for using parity relations
to generate residuals for FDI. The prodiem of determining robust parity relations for.... . i ;
residual generation using the parity function method was studied. This design task
was formulated as an optimization problem, and an example was presented to

illustrate the design methodology. A number of problem areas await further research.

They include : a method for selectiig useful parity structures for thé parity coefficient
problem studied in Section IV, solution procedures for the (minimax) optimization
prodlem, and a miethod for determining patity relations for other methods of residual

generation (i.e. the open-loop and the closed-loop methods). /[
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(5 -1 .7 0]
0 8 0

-1 0 0 .
0 0 72 .4‘

01"[0010]‘
¢ =1[010 0
¢e; = [0001)

-0

v, € L02, .2) nominal y; = .1

y2 € [-2, =11 nominal y; = —.15

TABLE 1: SYSTEM PARAMETERS

o s a2t

e i e g ¥ © = i+ mamin o

PP IP U PR Ll




e O o

[0 0 0 o]
01 0 o

0 0 0 o]

Q O o o

(0 0 0 o]
0 0 0 1

0 0 0 0.

TABLE 2. THE C AND & MATRICES
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Q=

25

TEST COND. PARAMETERS
X, {000 o)
a.. —
Q DIAGR=[1 1 1]
b [-4.16 7.03 4.06 -1.01)
b
Q DIAGR =[11 1]
X, [4.06 2.90 580 -1.4S)
(4
Q DIAGR=[11 1]
X, [4.06 2.90 5.80 —1.45])
d
Q DIAG R = [1 2 2]
X, (4.06 2.90 5.80 —1.45)'
[
Q DIAGR=[21 1]
x, [4.06 2.90 5.80 —1.45)
f
Q, DIAGR«[1 1 1]
0 0 0 ] [ 25 0 .32
0 o0 0 0 5 0
Q=
0 o0 0 .325 0 625
0 0 .25 _ L0 0 0

TABLE 3: TEST CONDITIONS

25




[ .5580
0342
-.1508

| -.0552

" 1.9580
-.8434
-1.1140
| -.1040

TABLE4: NOMINAL ... .o.o ...

0342
0102
-.0129
-.0097

-.8434
1.8030

7691
-.1996

-.1508
-.0129
S112
0117

-1.1140
7691
2.6080
-.1081

-~

-.0552
-.0097
0117

I115

-.1049
-.1996
-.1081

3829




.
o
o

m},"ﬁn NG, & a*

| — 1.022 1282 -,6808 0791

) 2 1.008 9983 0223 0483 0219
3 1.118 6833 -.7208 - 1167
1 1.082 641§ - 7666 0378

b. 2 1.101 4462 5079 - 4356 5942
3 1.210 7027 - 7115 -.0640
1 1.098 8947 3667 -, 25581

] 2 1.055 9599 - 1484 1992 1296
3 1.230 1597 -.6504 0249
| 1.908 7865 .3023 - 5385

d 2 1.123 7345 -.5931 4697 -.6559
3 2228 981 -.6007 0684
1 1.124 3058 -.5832 -102§

e 2 1.122 9669 - 1204 e 01242 1878
3 1.230 1441 -.6678 1692
1 1.427 1327 -.6803 -.0166

f 2 1.311 $146 4404 -3312 6570
3 1.254 6388 - 7687 0378

TABLE $: MINIMAX PARITY COEFFICIENTS AND PARITY ERRORS

NS
Sy £ -
[




TEST PAR.
COND. FUNC. ) 2. 3

] 243 ¢y 5040 vy .
¢ ) 1764 934y, .
P3 022y, . 107,

P 390, 188 v, . ¥
¢ Pr . 133, 693 v, . |
1 P, 046y, - 126y, |

T /

TABLE 6: = VALUES FOR SELECTED TEST CONDITIONS .




